前言
航空发动机作为飞机的核心组成部分,是影响航空工业发展水平的重要因素。紧固件作为连接和固定航空发动机各部分的重要构件,其性能的高低限制着航空发动机的发展。由镍基高温合金制成的航空发动机紧固件,在工作过程中摩擦因数较大,过大的摩擦因数使得紧固件在摩擦过程中产生大量的热,界面温度瞬间升高,高温会将两个表面进行焊接导致螺栓和螺母咬死现象发生。长期处于高温(650 ℃以上)工况下,螺栓和螺母咬死现象更是频发。螺栓和螺母咬死问题严重阻碍了航空发动机紧固件的发展,已成为亟待解决的难题。为了降低航空发动机中螺栓和螺母咬死问题的发生频率,科研工作者不断探索高温环境下的紧固件保护技术。涂层保护技术作为紧固件保护技术中的主流方法[1-3],可以通过降低螺栓和螺母之间的摩擦因数来达到保护的目的[4-5]。在众多高温保护涂层中,银因具有 962 ℃的高熔点和优秀的润滑特性、较低的剪切强度成为紧固件保护涂层优先选择的材料[6-7]。目前针对银涂层在高温环境中的应用已有较为成熟的研究。
TRONCI 等[8]在研究过程中发现,工作温度在450 ℃以下时,银作为一种软涂层,剪切强度低,处于高温环境时,临界剪切应力仅为 0.588 MPa[9],能够允许较大的塑性变形量,是很好的固体润滑剂,可以在接触区起到一定的润滑作用[10-11]。在运动副相对运动的过程中,处于接触面的银涂层会发生形变从而减小运动副的摩擦因数,因此采用银涂层对航空发动机紧固件进行保护,理论上可以有效减少咬死现象[12]。但由于银涂层自身特性与电镀制备方法的原因,它存在高温下硬度不足、厚度不均匀、结合强度差等缺点。高温环境下银的硬度不足 0.5 GPa,涂层表面容易发生过度形变,承载能力差[13-14];过厚的银涂层会因承受载荷过大而发生过度形变或剥落,导致接触面积增大,摩擦因数增大[15];在经受温度循环时,表面状态缺乏可逆性[16],螺栓和螺母咬死问题仍会出现,镀银螺栓和螺母咬死失效如图 1 所示。现有涂层无法满足实际的使用需求。
本文在系统介绍航空发动机紧固件苛刻工况下主要磨损失效形式的基础上,从涂层的制备工艺和涂层成分出发,综述银涂层和复合增强涂层制备技术的现状,结合现有高温涂层的应用现状提出可能应用于紧固件的高温替代涂层,并通过对现用航空发动机失效紧固件的分析总结提出目前银涂层在实际使用过程中存在的问题。最后,对紧固件涂层保护技术未来应用前景提出了自己的思考和建议。
1、 紧固件中存在的磨损失效形式
航空发动机紧固件是航空领域的重要部件,其常用材料为镍基高温合金。长期工作于高温环境(650 ℃)的紧固件会因微动磨损、磨粒磨损、氧化磨损和粘着磨损而失效[17-18]。其中,微动磨损是由于紧固件材料在接触压力和小幅度横向位移下从表面上去除而发生的,磨粒磨损是由于紧固件配副中较硬材料与较软材料的摩擦作用而发生的,氧化磨
损是由于紧固件材料与周围氧气发生化学反应而发生的,粘着磨损是由于紧固件配副在滑动摩擦时接触面局部发生金属粘着而发生的[19-21]。微动磨损、磨粒磨损、氧化磨损和粘着磨损问题导致涂层出现脱落、凹坑甚至剥落;氧化会使涂层材料表面生成氧化物,附着力变差,影响涂层性能,加剧磨损[22]。
1.1 紧固件基材磨损失效形式
1.1.1 微动磨损
微动磨损是紧固件在工作过程中不可避免的[23]。LEE 等[24-25]通过研究发现,在航空航天紧固件中,微动磨损是最常见的一种磨损形式。在进行了更深入的研究后,LEE 等还发现,在航空发动机工作过程中,极小振幅是引起紧固件微动磨损的主要原因,微动磨损会导致接触表面发生形变,甚至出现微观结构变化、应力集中、裂纹萌生等问题。此外,微动磨损还会导致紧固件配副材料损失,TONG 等[26]在确定紧固件与配副之间磨损损失时发现,在一定范围内,随着微动循环次数增加,磨损量呈现逐渐增加的趋势,如图 2 所示。微动磨损会导致螺纹磨损失效[27-28]。
1.1.2 磨粒磨损
碎屑会随着拧紧和磨损过程的进行而逐渐增多,导致磨粒磨损[29-30]。HUA 等[25]在反复拧紧和微动磨损后的螺纹表面观察到明显的碎屑和磨损颗粒。磨粒磨损会对螺纹产生损伤。ECCLES W 等[29]对反复拧紧之后的螺纹表面进行扫描电镜观察时还发现,其他磨粒磨损存在的迹象,如图 3 所示,区域(a)中螺母材料转移到了螺栓螺纹上,区域(b)中螺栓材料出现了损失,区域(c)中存在明显的磨粒磨损现象,区域(d)中磨损颗粒残留在了螺纹表面。LIU 等[31]在对紧固件进行加载循环测试时发现,螺纹因磨粒磨损的影响,产生了不可逆转的损伤,此外,在观察紧固件样件的表面形貌时发现磨粒磨损导致螺纹表面出现了严重的沟槽[32]。磨粒磨损除对螺纹表面造成损伤之外,磨损颗粒镶嵌在银涂层中形成磨粒还会造成涂层失效[33-34]。
1.1.3 氧化磨损
除微动磨损和磨粒磨损之外,有氧环境中紧固件存在着氧化磨损[35]。LIU 等[36]在采用 EDS能谱分析对受压最严重的螺纹表面进行分析时发现,磨损最严重的地方 O 元素含量出现明显升高,说明表面因氧化产生了磨损失效。在多次循环加载之后的螺纹表面也有类似的现象发生。YU 等[37]的研究证明循环载荷导致的螺纹磨损一部分是由氧化磨损引起的。针对类似问题,ZHANG 等[35]同样也在紧固件样件螺纹表面检测到较高含量的O 元素,部分区域形成了氧化膜,且部分氧化物碎片堆积在了螺纹表面,如图 4 所示。由此可见,氧化磨损不仅会损伤螺纹材料,还会使磨粒增多,磨粒磨损加剧。此外,覆盖于螺纹表面的涂层表面及其材料也会受氧化磨损的影响,存在失效风险。
1.1.4 粘着磨损
紧固件在大载荷或循环载荷工作条件下还会出现粘着磨损[38]。ZHOU 等[38]在观察受载为 6 kN 的螺纹表面的微观损伤时发现,粘着磨损导致表面出现了犁削现象,如图 5 所示。粘着磨损除了会在表面形成犁削现象外,还会产生粘着磨损颗粒,为了观察这种现象,HAN 等[39]还采用 3D 轮廓仪对摩擦学试验后样品表面进行了观察,结果发现,样品表面出现了配副颗粒。粘着磨损除了会对螺纹表面产生损伤外,还会使涂层脱落导致减磨效果下降。
综上,紧固件在工作过程中会受到微动磨损、磨粒磨损、氧化磨损、粘着磨损的影响,且在微动磨损的影响下,未涂覆保护涂层的螺纹表面会因螺栓和螺母相互挤压出现变形;长时间的微动磨损会使形变加剧,导致裂纹的产生和扩展,进而导致螺纹表面出现凹坑。参与磨粒磨损的磨屑主要在微动磨损、氧化磨损等过程中产生,与外界接触也会引入部分颗粒。磨粒磨损的发生会使螺纹表面出现侵入性破坏,除发生形变之外,部分高硬度或小颗粒还会嵌入螺纹表面,并且参与了表面裂纹的产生过程。高温环境除会使紧固件材料发生
氧化反应,硬度等性能降低之外,产生的氧化物颗粒还会参与并加剧氧化磨损和磨粒磨损。过大的接触应力还会导致螺纹表面出现块状脱落形成凹坑,发生粘着磨损,同时,块状脱落物在一定程度上也会加剧磨粒磨损。
1.2 紧固件银涂层磨损失效形式
为降低航空发动机紧固件磨损失效发生的频率,科研人员有时会采用银涂层对紧固件进行保护,但银涂层有时也会因为磨损而失效。在微动磨损和磨粒磨损的影响下,银涂层表面会发生形变及出现犁沟等;在氧化磨损的影响下,银涂层性质会发生改变,功能完整性也会受到破坏;在粘着磨损影响下,银涂层会出现剥落等,上述损害会在一定程度上导致涂层失效[40-41]。邱星瀚等[42]对覆盖于航空发动机紧固件上的电镀银涂层的失效表面进行观察时发现,螺纹中尖角处因应力集中而出现严重的粘着磨损和塑性变形,导致裂纹扩展,银涂层脱落失效。此外,高温使银涂层发生氧化反应,降低了银涂层润滑性能,氧化膜脱落加剧了工作过程中的磨粒磨损。QIN 等[43]在探索采用电镀工艺制备的银涂层的减磨性能时同样发现,银涂层在高温和磨损过程中因摩擦产生的大量热量的共同作用下出现了快速软化的情况,塑性变形加剧,较多区域的银涂层因磨损出现转移和剥落现象,配副与基体出现直接接触。
常温和 350℃条件下,部分区域银涂层也因磨损出现了剥落和转移的情况,导致配副与基体出现了直接接触。RT(常温)、350 ℃、600 ℃下的试样磨损后表面形貌如图 6 所示。周红等[44]在对通过电火花沉积工艺制备的银涂层进行摩擦磨损性能进行研究时还发现,在常温摩擦磨损过程中,随着载荷越大,银涂层发生塑性变形越大,银的再结晶温度越低,大量银颗粒由此产生,部分银涂层出现剥落和转移,基体逐渐暴露,摩擦因数上升。在高温摩擦磨损过程中,大载荷使银涂层发生严重塑性变形,银的熔点下降,摩擦过程产生的较高温度促使银熔化结晶形成银颗粒,导致银涂层发生转移和磨粒磨损,进而银涂层发生失效;高温还使银涂层部分发生氧化。银涂层失效后的磨痕形貌如图 7 所示。对图 7a 进行能谱分析可知,灰色区域主要元素为 Ag,黑色区域 Fe 元素含量较高,这表明黑色区域涂层已消失;对图 7c 中白色颗粒进行能谱分析可知,颗粒的主要元素为 Ag,表明银涂层在磨损过程中会逐渐变成银颗粒而发生脱落或转移。此外,在研究TiN-Ag 球盘摩擦磨损行为时还发现,对于电镀工艺得到的银涂层,大载荷和高转速使银涂层出现块状剥落,表面接触面间的粘着作用增强,划痕变深,数量增多,磨粒磨损加剧[45]。
2、 银涂层与复合增强涂层制备技术
2.1 单一银涂层制备技术
航空发动机处于工作过程中时会产生振动,使得航空发动机紧固件在工作过程伴有微动磨损和磨粒磨损;因常工作于高温环境中,覆盖于紧固件上的涂层会发生氧化。此外,紧固件内部因存在较大接触应力,还会产生粘着磨损。高温时还会使银涂层软化,过度形变、剥落等失效问题频发,已无法满足使用需求,其性能亟待提高。
研究人员在大量研究的基础上发现,工艺优化和材料复合是提高银涂层高温下润滑能力最有效的两个措施。用磁控溅射工艺替代电镀工艺可以有效改善银涂层与基体的结合力、厚度均匀性、硬度和显微结构。
TRONCI [46]采用电镀工艺制备了银涂层,并开展了摩擦学测试。结果发现,在常温环境下,银涂层具有足够的保护能力。高温环境下的测试结果表明,银涂层因失效无法起到保护作用,且经 600 ℃热循环测试后,样件表面摩擦因数显著上升。作者分析出现这种情况的原因可能有两个,银涂层因高温和重复使用部分发生剥落,而剩余银涂层因热老化和退火变得更易转移到配副或剥落。尽管银熔点较高,但高温会对银涂层的硬度和结合力产生影响。银涂层目前常用的制备工艺是电镀,电镀工艺具有厚度不均匀和结合强度差等缺点。SLINEY[47]在研究中发现,过厚的银涂层在实际工作过程中会因过度变形,导致尺寸精度被破坏,摩擦因数增大。CHEN 等[48-49]采用磁控溅射工艺代替电镀工艺制备了银涂层,研究发现,磁控溅射工艺得到的银涂层晶粒更为细腻,缺陷更少,厚度均匀性也更好。磁控溅射工艺得到的银涂层与电镀工艺得到的银镀层结合强度、硬度的对比结果也表明,常温下磁控溅射工艺得到的银涂层硬度可提高45.5%,结合强度可提高 3 倍,两种工艺得到的银涂层的结合力对比如图 8 所示,显微硬度对比如图 9 所示。
综上,与电镀工艺得到的银涂层相比,磁控溅射工艺得到的银涂层在结构方面,具有更为均匀和精细的结构,且内部出现缺陷的情况减轻;在工艺性方面,尺寸控制更精准,厚度均匀性也更占优势;在性能方面,与基体结合强度出现提高,在热循环后的硬度更高。采用磁控溅射工艺得到银涂层在高温下不容易发生剥落和过度形变,具有更优的耐磨性。因此,采用磁控溅射工艺制备的银涂层更适合于高温环境下的紧固件保护[12, 50]。
2.2 复合增强涂层制备技术
在银涂层中掺杂高硬度或具有较优润滑性能的材料,可以有效提高涂层的润滑能力,与其他固体润滑剂混合也可以有效改善涂层的润滑能力。
为寻找合适的复合材料,SLINEY[47]采用等离子喷涂工艺制备纯银与镍铬合金、玻璃润滑镍基高温合金复合涂层,并开展 430 ℃摩擦学测试。结果表明;镍铬合金可以通过提高银涂层的硬度来提高银涂层的润滑能力;玻璃润滑镍基高温合金可以通过在银涂层与配副接触表面成釉来提高银涂层的润滑能力。此外,还对通过等离子喷涂工艺制备的纯银与 CaF2 复合涂层开展了 430 ℃摩擦学测试试验,结果表明,CaF2 可以通过提高银涂层的高温润滑能力来提高银涂层的润滑能力。针对润滑性能较好的材料,CHEN 等[51]尝试在电镀工艺制备的银涂层摩擦磨损过程中添加聚苯胺(PAN)润滑脂来提高润滑性能。研究发现,PAN 润滑脂的银涂层在工作过程中会形成边界润滑膜,能够有效提高减磨能力,磨痕宽度也有所减小,润滑脂添加前后试样磨痕宽度对比如图 10 所示。ZHU 等[52]在研究过程中发现,将 Ag 与BaF2 / CaF2 共晶进行混合可以形成宽温度范围条件下的复合润滑剂,可以充分利用 Ag 在 500 ℃以下良好的润滑作用和 BaF2 / CaF2 共晶在 450 ℃以上良好的润滑作用, 该复合润滑剂可以从室温到1 000 ℃提供良好的润滑性。
综上,添加增强材料可以有效提高银涂层的硬度、润滑性等基础性能,提高银涂层抵抗破坏的能力。在摩擦磨损过程中辅以润滑脂可以减轻银涂层在工作过程中表面因磨损而出现裂纹等破坏形式的情况,提高银涂层的减磨能力。此外,将银涂层与其他工作温度范围的优异润滑剂共混,对银涂层扩展润滑能力的有效工作温度和增加有效工作时长具有十分可观的作用。
3 、高温替代涂层
除对银涂层进行优化之外,还可寻找高温下润滑性能良好的替代涂层。为了寻找高温环境中用于紧固件保护的银涂层的替代涂层材料,学者们也进行了诸多研究。大量试验证明,含铬、钛或铝的涂层作为应用于高温工作环境中的涂层,除具有良好的硬度、结合力等性能之外,润滑性能也较为优异。
上述三种涂层可能替代银涂层成为高温环境中紧固件保护涂层。
3.1 高硬度特性涂层
研究人员针对含 Cr 涂层的高温润滑性能做了大量研究。ZHOU 等[53-57]分别采用不同的工艺(激光熔覆、电镀)制备了 NiCrBSi 涂层、NiCrBSi / WC-Ni复合涂层和硬铬涂层。结果均发现:在处于高温环境中时,涂层表面因铬的存在仍会保持较高的硬度,不易因涂层变软而出现变形和凹坑,NiCrBSi 涂层、NiCrBSi / WC-Ni复合涂层的显微硬度如图11所示。
此外,还研究了含 Ti 涂层在高温下的润滑性能,ZHOU 等[58-61]分别采用不同的工艺(非真空电子束熔覆、冷喷涂)制备了 Ti-41Al-7Cr 涂层、Ti 涂层,结果均发现,在处于高温环境中时,Ti 会被氧化形成 TiO2,TiO2 可以提高涂层的硬度;在摩擦作用下,TiO2 小颗粒会导致金属碎屑破碎,减小磨粒磨损带来的危害,提高涂层减磨耐磨能力提高。此外,TRONCI[46]采用磁控溅射工艺制备了含铬涂层,高温下热循环后的具有较优的硬度,钛涂层的显微硬度变化如图 12 所示。
3.2 高温特种氧化涂层
为探究含 Al 涂层在高温下的润滑性能,WU等[62-65]分别采用不同的工艺(阴极电弧蒸发沉积、激光熔覆、大气等离子喷涂)制备了 Ti0.53Al0.47N涂层、FeCoCrNiMnAlx 涂层、NiAl-MoO / CuO 复合涂层,结果均发现,在处于高温环境中时,Al 会被氧化形成 Al2O3,Ti0.53Al0.47N 在不同温度下的氧化膜厚度变化如图 13 所示。覆盖在涂层上的 Al2O3氧化皮除了可以通过成釉提高摩擦副接触面处的润滑性能,提高涂层韧性,从而使得裂纹不易产生和拓展之外,还可以减少涂层与配副的直接接触面积,提高涂层抵抗破坏的能力。
综上,铬元素和钛元素作为高硬度特性涂层中的代表元素,可以使保护涂层在高温环境下具有相对较高的硬度,且钛在高温环境下形成的高硬度氧化物颗粒还可以破坏参与磨粒磨损过程的碎屑,减小磨粒磨损带来的影响;铝元素作为高温特种氧化涂层中的代表元素,在高温环境下形成的氧化物釉层可以增强保护涂层的润滑特性,且铝在高温环境下形成的氧化物层可以减少涂层与配副直接接触的面积。高硬度特性和高温氧化特性可能使含铬涂层、含钛涂层、含铝涂层在高温环境中具有比银涂层更优异的保护能力,可以尝试作为航空发动机紧固件的替代保护涂层。
4、 现用航空发动机紧固件失效分析及研究现状
4.1 失效机制分析
在实际使用过程中因存在应力集中等现象,会出现涂层严重剥落的情况,导致紧固件失效。因此,须对使用过程中得到的失效螺母进行分析。为了分析银涂层在实际工作过程中的摩擦学行为,得到现用航空发动机紧固件失效原因,本文利用扫描电镜对银涂层失效螺母表面进行观察,并对其中部分区域进行 EDS 能谱分析;利用金相显微镜对失效螺母侧面进行观察。该失效螺母为随航空发动机在 650 ℃下试验十几个小时后得到。螺栓的材料为钴基高温合金,螺母的材料为镍基高温合金。银涂层为通过电镀工艺制备得到,厚度为 5~8 μm。
样品表面形貌如图 14 所示。选择样品螺纹中 3处磨损相对严重的位置扫描电镜分析,如图 14 中螺母样品标示框。从图中可以看出,因为自锁效果的存在,银涂层发生了形变,且在表面有凹坑出现,部分银涂层甚至出现了剥落现象。同时对图中磨损严重的位置进行了 EDS 能谱分析,结果表明,银涂层除发生剥落现象之外,还有部分被氧化;配副碎屑粘着到了银涂层上。另选取螺母制样后样品上几处出现明显缺陷的地方进行金相显微镜分析,如图15 所示。从图中可以发现,挤压作用的存在,使得螺纹顶部、螺纹底部、螺纹侧面的基体发生了一定的形变,螺纹顶部是形变最严重的地方;挤压和磨损交互作用的存在使得覆盖于基体的涂层出现了缺口和完全脱落现象;银涂层在制备过程或工作过程
中引入了杂质颗粒和空洞。
4.2 失效机制研究现状
银涂层作为高温(600℃以上)下最常用的紧固件保护涂层,失效仍时有发生。为提出失效问题的有效解决办法,许多学者对覆盖于紧固件上的银涂层在高温工作环境中的失效机制进行了研究。邱星瀚等[42]对应用于航空发动机的紧固件电镀银涂层的失效形貌进行分析时发现,银因具有较高的扩散率,在高温工作环境中,银涂层内部会因材料聚集而产生的孔洞,孔洞的产生导致涂层的结合力降低,在循环载荷和磨损的作用下,还会导致孔洞塌陷,进而出现凹坑和裂纹,甚至还会出现银涂层脱落失效的情况,此外,孔洞的出现也会加速银涂层内部和基体氧化,进一步使银涂层的结合力降低。紧固件侧面形貌及元素线扫描结果如图 16 所示。而二硫化钼涂层作为低温(150 ℃以下)下最常用的紧固件保护涂层,失效也时有发生。LIU 等[31-32, 66]对表面通过喷涂工艺制备有 MoS2 涂层的紧固件失效件进行了观察。在较低初始拧紧扭矩条件下的样品表面形貌和 A、B 两处 EDS 能谱分析结果如图 17 所示。结果表明,低的初始拧紧扭矩使区域(Ⅰ)处的磨损加剧,涂层被完全去除,且还出现了明显的分层现象。B 处的 EDS 能谱分析结果表明 B 处发生了轻微的氧化反应。
除对覆盖于紧固件上银涂层宏观失效行为进行探索之外,陈爽等[67]还对银涂层的微观摩擦特性进行了分子动力学模拟,研究发现,温度越高,银原子位移越大且越无序,不同温度下的原子位移见图18 所示。但上述探究并未对银原子的在微观上的转移、结合能等微观表现进行探索,失效的根本原因未发现。
综合扫描电镜、EDS 能谱及金相显微镜得到的结果和学者们的研究结果可知,高温下银涂层软化和银的高扩散率是涂层失效的主要原因[46-48],软化会导致形变量增大,过度变形会导致银涂层表面出现凹坑和剥落从而失效;银材料本身高扩散率与高温工作环境而出现的内部有害孔洞会导致银涂层在工作过程中磨损损害和氧化的加剧。此外,预处理、涂层制备及零件保存过程操作不当也可能会造成涂层性能不足或者失效,由螺母加工工艺而出现的粗糙度和尺寸问题会导致应力集中现象和银涂层结合力不足的情况,加速涂层失效。但上述失效原因分析具有一定局限性,仅针对银涂层在测试或应用中的宏观表现,未对银涂层原子在微观层面的表现进行分析。为了进一步明确银涂层失效机理,还须对银涂层原子的摩擦磨损过程进行分子动力学模拟,对银原子转移和涂层与基体的结合能变化等进行观察和分析,以得出更符合事实的结论。
5 、结论与展望
涂层保护技术在航空发动机紧固件领域的使用效果已经得到了广泛认可。银涂层作为使用最为广泛的一种高温保护涂层,仍会出现变形、剥落等失效问题,这表明应用于高温环境的涂层保护技术还有待提高。针对银涂层的应用前景,提出以下展望:
(1)进行银涂层原子转移等微观层面的研究。涂层的宏观性质由涂层原子决定,对银涂层摩擦磨损过程进行分子动力学模拟,对涂层与配副交界处的原子转移情况和涂层与基体之间的结合能变化等问题进行分析和探究,对于探索涂层失效的根本原因,解决涂层的失效问题具有必要的宏观不可替代的作用。
(2)采用磁控溅射工艺制备银涂层。与电镀工艺相比,磁控溅射工艺制得的银涂层具有更优的厚度均匀性和结合强度,微观结构也更加致密,可以有效提高银涂层抵抗破坏的能力。
(3)尝试添加增强材料对银涂层改性或与其他固体润滑材料形成复合润滑涂层。通过添加具有高硬度特性的镍铬合金、具有自润滑特性的聚苯胺等材料可以有效增强银涂层的硬度或润滑性能,从而提高银涂层的减磨耐磨能力;复合润滑涂层可以增加银涂层的工作温度范围。
(4)开发含铬、钛或铝等高硬度特性或高温特种氧化涂层。铬、钛作为涂层组成材料,可以提高涂层的硬度,铝在高温下形成的氧化物釉层,具有出色的润滑效果,由其组成的涂层减磨耐磨能力十分可观,可尝试将上述涂层作为紧固件的新型保护涂层。
参 考 文 献
[1] CROCCOLO D, DE AGOSTINIS M, FINI S, et al.Experimental investigation on the friction coefficients for different materials, lubrication conditions and coatings in
bolted joints[C]//Pressure Vessels and Piping Conference,2020-03-01,Minneapolis. American Society of Mechanical Engineers, 2020, 83822: V002T02A025.
[2] MA J. An experimental study on factors affecting the friction coefficients in electroplated bolts[J]. Tribology Transactions, 2020, 63(5): 913-923.
[3] GRILLI M L, VALERINI D, SLOBOZEANU A E, et al.Critical raw materials saving by protective coatings under extreme conditions: A review of last trends in alloys and coatings for aerospace engine applications[J]. Materials, 2021, 14(7): 1656.
[4] AWANG M, KHALILI A A, PEDAPATI S R. A review:thin protective coating for wear protection in high-temperature application[J]. Metals, 2019, 10(1): 42.
[5] GU Y, XIA K, WU D, et al. Technical characteristics and wear-resistant mechanism of nano coatings: A review[J].Coatings, 2020, 10(3): 233.
[6] RENHART P, SUMMER F, GRÜN F, et al. The tribological performance of silver in aircraft turbine load cases[J]. Tribology International, 2021, 163: 107184.
[7] VOEVODIN A A, MURATORE C, AOUADI S M. Hard coatings with high temperature adaptive lubrication and contact thermal management: review[J]. Surface and Coatings Technology, 2014, 257: 247-265.
[8] TRONCI G, MARSHALL M B. Understanding the behaviour of silver as a low friction coating in aerospace fasteners[J]. Tribology International, 2016, 100: 162-170.
[9] 蔡群,蒲吉斌. CrN 和 CrN / Ag 涂层的真空高温摩擦磨损性能[J]. 润滑与密封,2021,46(12):19-29.
CAI Qun, PU Jibin. Friction and wear properties of CrN and CrN / Ag coatings in vacuum at high temperature[J]. Lubrication and Sealing, 2021, 46(12): 19-29. (in Chinese)
[10] YU D, YU L, ASEMPAH I, et al. Microstructure,mechanical and tribological properties of VCN-Ag composite films by reactive magnetron sputtering[J].Surface and Coatings Technology, 2020, 399: 126167.
[11] 何鹏飞,王海斗,马国政,等. 含银硬质涂层高温摩擦学性能的研究进展[J]. 中国有色金属学报,2015(11):2962-2974.
HE Pengfei, WANG Haidou, MA Guozheng, et al.Research progress of high temperature tribological properties of silver-containing hard coatings[J]. Chinese Journal of Nonferrous Metals, 2015(11): 2962-2974. (in Chinese)
[12] 陈亚军,郁佳琪,赵婕宇,等. 磁控溅射高温固体自润滑涂层的研究与进展[J]. 材料导报,2018,31(3):32-37.
CHEN Yajun, YU Jiaqi, ZHAO Jieyu, et al. Research anddevelopment of high temperature solid self-lubricating coating by magnetron sputtering[J]. Material Guide, 2018,31(3): 32-37. (in Chinese)
[13] SIEH R. Self-lubricating non-cyanide silver- polytetrafluoroethylene composite coating for threaded compression fittings[D]. North Carolina: University of Plymouth, 2017.
[14] ASADAUSKAS S J, STALNIONIS G, BIKULCIUS G, et al. Nanoscale deposition of group IVB elements on anodized surfaces to reduce friction[J]. Materials Today Communications, 2021, 29: 103008.
[15] NASSAR S A, ZAKI A M. Effect of coating thickness on the friction coefficients and torque-tension relationship in threaded fasteners[J]. Journal of Tribology, 2009, 131(2):02130.
[16] SADRI E, ASHRAFIZADEH F. High temperature nanocomposite coatings by plasma spraying for friction and wear applications[M]. Hershey: IGI Global. 2018:216-245.
[17] GRABON W A, OSETEK M, MATHIA T G. Friction of threaded fasteners[J]. Tribology International, 2018, 118:408-420.
[18] 张朝前,李涛,杨夏明,等. 剪切激励下盲孔螺栓连接结构的松动行为研究[J]. 润滑与密封,2020,45(7):8-15.
ZHANG Chaoqian, LI Tao, YANG Xiaming, et al. Study on the loosening behavior of blind hole bolted structures under shear excitation[J]. Lubrication and Sealing, 2020,45(7): 8-15. (in Chinese)
[19] MENG Y, XU J, JIN Z, et al. A review of recent advances in tribology[J]. Friction, 2020, 8(2): 221-300.
[20] BHADAURIA N, PANDEY S, PANDEY P. Wear and enhancement of wear resistance—A review[J]. Materials Today: Proceedings, 2020, 26: 2986-2991.
[21] KAKULITEK K, KANDASUBRAMANIAN B. Rudiment of “galling: Tribological phenomenon” for engineering components in aggregate with the advancement in functioning of the anti-galling coatings[J].Surfaces and Interfaces, 2019, 17: 100383.
[22] 李荆. 三种螺纹连接结构在剪切激励作用下的松动行为研究[D]. 成都:西南交通大学,2017.
LI Jing. Study on the loosening behavior of three kinds of threaded connection structures under shear excitation[D].Chengdu: Southwest Jiaotong University, 2017. (inChinese)
[23] LORENZO-MARTIN C, AJAYI O, HARTMAN K, et al.Effect of Al2O3 coating on fretting wear performance of Zr alloy[J]. Wear, 2019, 426: 219-227.
[24] LEE L, RéGIS É, DESCARTES S, et al. Fretting wear behavior of Zn–Ni alloy coatings[J]. Wear, 2015, 330: 112-121.
[25] HUA K, TONG Y, ZHANG F, et al. Dependence of fretting wear on the microstructure characteristics and impact on the subsurface stability of a metastable βtitanium alloy[J]. Tribology International, 2022, 165:107351.
[26] TONG Y, HUA K, ZHANG F, et al. Wear-and surface-fatigue-mediated damage during fretting in a high-strength titanium alloy[J]. ACS Applied Engineering Materials, 2022, 1: 200-213.
[27] 赵晶,徐啸. 法兰螺栓横向微动磨损试验研究[J]. 机械强度,2020,42(4):831-836.
ZHAO Jing, XU Xiao. Experimental study on transverse fretting wear of flange bolts[J]. Mechanical Strength, 2020, 42(4): 831-836. (in Chinese)
[28] 王文哲,郑韶先,魏垚. 高变温环境下 MoVN-Ag 涂层的摩擦磨损性能实验研究[J]. 兰州交通大学学报,2020,39(3):130-137.
WANG Wenzhe, ZHENG Shaoxian,WEI Yao.Experimental study on friction and wear properties of MoVN-Ag coating under high temperature environment[J]. Journal of Lanzhou Jiaotong University,2020, 39(3): 130-137. (in Chinese)
[29] ECCLES W, SHERRINGTON I, ARNELL R D.Frictional changes during repeated tightening of zincplated threaded fasteners[J]. Tribology International, 2010,43(4): 700-707.
[30] HAN X, THRUSH S J, ZHANG Z, et al. Tribological characterization of ZnO nanofluids as fastener lubricants[J]. Wear, 2021, 468: 203592.
[31] LIU J, MI X, HU H, et al. Loosening behaviour of threaded fasteners under cyclic shear displacement[J].Wear, 2020, 460: 203453.
[32] ZHOU J, LIU J, OUYANG H, et al. Anti-loosening performance of coatings on fasteners subjected to dynamic shear load[J]. Friction, 2018, 6(1): 32-46.
[33] NAMER N S, NAMA S A, MEZHER M T. The influence of nano particles additive on tribological properties of AA2024-T4 coated with TiN or SiN thin films[J]. J. Mech.Eng. Res. Dev., 2019, 42: 30-34.
[34] 葛泉江,张兴洪,马欣新,等. M50 高温轴承钢表面TiN 涂层与镀银层对磨的摩擦特性[J]. 航空制造技术,2017,60(23 / 24):54-58.
GE Quanjiang, ZHANG Xinghong, MA Xinxin, et al.Friction characteristics of TiN coating and silver coating on M50 high temperature bearing steel[J]. Aviation Manufacturing Technology, 2017, 60(23 / 24): 54-58. (inChinese)
[35] ZHANG M, LU L, WANG W, et al. The roles of thread wear on self-loosening behavior of bolted joints under transverse cyclic loading[J]. Wear, 2018, 394: 30-39.
[36] LIU J, OUYANG H, PENG J, et al. Experimental and numerical studies of bolted joints subjected to axial excitation[J]. Wear, 2016, 346: 66-77.
[37] YU H, WANG Z, YUAN J. Loosening and fracture behavior of hybrid titanium-to-steel threaded connection under cyclic loading condition[J]. Engineering Failure Analysis, 2022, 142: 106742.
[38] ZHOU J, LIU J, OUYANG H, et al. Self-loosening behavior of bolted joints subjected to dynamic shear load[J]. International Journal of Modern Physics B, 2019,33(1-3): 1940009.
[39] HAN X, ZHANG Z, WANG B, et al. Microstructures,compressive residual stress, friction behavior, and wear mechanism of quenched and tempered shot peened medium carbon steel[J]. Wear, 2022, 488: 204131.
[40] 胡华民,李涛,张挺,等. 横向交变载荷下 TiCN / MoS2涂层螺栓的防松性能研究[J]. 摩擦学学报,2020,40(5):569-578.
HU Huamin, LI Tao, ZHANG Ting, et al. Study on anti-loosening performance of TiCN / MoS2 coated bolt under transverse alternating load[J]. Journal of Tribology,2020, 40(5): 569-578. (in Chinese)
[41] 严维明. 切向激励下三种涂层螺栓连接结构的松动机理研究[D]. 成都:西南交通大学,2019.
YAN Weiming. Study on the loosening mechanism of three kinds of coated bolted connections under tangential excitation[D]. Chengdu: Southwest Jiaotong University,2019. (in Chinese)
[42] 邱星瀚,陈亚军,杨雅婷,等. V2500 发动机燃烧室紧固件银镀层失效机理研究[J]. 电镀与精饰,2021,43(7):1-9.
QIU Xinghan, CHEN Yajun, YANG Yating, et al. Study on failure mechanism of silver plating on V2500 engine combustion chamber fasteners[J]. Plating & Finishing,2021, 43(7): 1-9. (in Chinese)
[43] QIN Y, XIONG D, LI J, et al. Adaptive-lubricating PEO / Ag / MoS2 multilayered coatings for Ti6Al4V alloyat elevated temperature[J]. Materials & Design, 2016, 107:311-321.
[44] 周红,唐光泽,古乐,等. 轴承钢表面电火花沉积银涂层摩擦磨损性能研究[C]// 第十届全国表面工程大会暨第 六 届 全 国 青 年 表 面 工 程 论 坛 论 文 集 ( 二 ),2014-10-29,武汉,2014:127-130.
ZHOU Hong, TANG Guangze, GU Le, et al. Study on friction and wear properties of silver coating deposited by electrospark on bearing steel surface[C]// Proceedings of the 10th National Surface Engineering Conference and the 6th National Youth Surface Engineering Forum(II)October 29, 2014, Wuhan, 2014: 127-130. (in Chinese)
[45] 陈雄刚. 轴承钢表面 TiN 涂层与电镀银层摩擦磨损行为研究[D]. 哈尔滨:哈尔滨工业大学,2016.
CHEN Xionggang. Study on friction and wear behavior of TiN coating and electroplated silver coating on bearing steel surface[D]. Harbin: Harbin Institute of Technology,2016. (in Chinese)
[46] TRONCI G. Frictional behaviour of coated self-locking aerospace fasteners[D]. Sheffield: University of Sheffield, 2017.
[47] SLINEY H E. The use of silver in self-lubricating coatings for extreme temperatures[J]. ASLE Transactions, 1986,29(3): 370-376.
[48] CHEN Y, YANG Y, HE P, et al. High temperature performance of silver coating deposited by magnetronsputtering[J]. Materials at High Temperatures, 2022, 39(2):149-160.
[49] 宋肖肖,崔子凡,何鹏,等. 磁控溅射银镀层和电镀银镀层硬度及结合性对比研究[J]. 中国表面工程,2022,34(1):104-111.
SONG Xiaoxiao, CUI Zifan, HE Peng, et al. Comparative study on hardness and adhesion of magnetron sputtering silver coating and electroplated silver coating[J]. China Surface Engineering, 2022, 34 (1): 104-111. (in Chinese)
[50] THOMPSON V, EATON R, RAFFRAY R, et al.Properties of low friction anti-seize coatings for fusion applications[J]. Fusion Engineering and Design, 2019,146: 345-348.
[51] CHEN J, XIA Y, HU Y, et al. Tribological performance and conductive capacity of Ag coating under boundary lubrication[J].Tribology International,2017,110:161-172.
[52] ZHU S, CHENG J, QIAO Z, et al. High temperature solid-lubricating materials:A review[J]. Tribology International, 2019, 133: 206-223.
[53] ZHOU W, ZHOU K, LI Y, et al. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings[J]. Applied Surface Science, 2017, 416: 33-44.
[54] BALAMURUGANG,DURAISELVAM M,ANANDAKRISHNAN V.Comparison of high temperature wear behaviour of plasma sprayed WC–Cocoated and hard chromium plated AISI 304 austenitic
stainless steel[J]. Materials & Design, 2012, 35: 640-646.
[55] SHARMA S. High temperature erosive wear study of NiCrFeSiB flame sprayed coatings[J]. Journal of theInstitution of Engineers(India): Series D, 2012, 93(1):7-12.
[56] HAN T, XIAO M, ZHANG Y, et al. Laser cladding Ni-Ti-Cralloy coatings with different process parameters[J]. Materials and Manufacturing Processes,2019, 34(15): 1710-1718.
[57] GUO C, ZHOU J, CHEN J, et al. Improvement of the oxidation and wear resistance of pure Ti by laser cladding at elevated temperature[J].Surface and Coatings Technology, 2010, 205(7): 2142-2151.
[58] ZHOU H. Microstructure control and properties of cold-sprayed titanium and its alloy coatings[J]. Materials Science and Technology, 2021, 37(2): 121-143.
[59] LAZURENKO D V, GOLKOVSKY M G, STARK A, et al.Structure and properties of Ti-Al-Ta and Ti-Al-Crcladding layers fabricated on titanium[J]. Metals, 2021,11(7): 1139.
[60] YAZDI R, GHASEMI H, ABEDINI M, et al. Oxygen diffusion layer on Ti–6Al–4V alloy: scratch and dry wear resistance[J]. Tribology Letters, 2019, 67(4): 1-15.
[61] WU Q, ZHENG H, ZHANG Z, et al. High-temperature wear and cyclic oxidation behavior of (Ti, W)C reinforced stainless steel coating deposited by PTA on a plain carbon steel[J]. Surface and Coatings Technology, 2021, 425:127736.
[62] WU Z, SUN P, QI Z, et al. High temperature oxidation behavior and wear resistance of Ti0. 53Al0. 47N coating by cathodic arc evaporation[J]. Vacuum, 2017, 135: 34-43.
[63] YAO Q, JIA J, CHEN T, et al. High temperature tribological behaviors and wear mechanisms of NiAl-MoO3 / CuO composite coatings[J]. Surface and Coatings Technology, 2020, 395: 125910.
[64] YE F, JIAO Z, YAN S, et al. Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer[J]. Vacuum, 2020, 174: 109178.
[65] CUI Y, SHEN J, HU S, et al. Oxidation and wear mechanisms of FeCoCrNiMnAlx cladding layers at high-temperature condition[J]. Coatings, 2020, 10(11): 1136.
[66] LIU J, OUYANG H, FENG Z, et al. Study onself-loosening of bolted joints excited by dynamic axial load[J]. Tribology International, 2017, 115: 432-451.
[67] 陈爽,卜少熊,宋晨光,等. 铜基银膜摩擦特性的分子动力学研究[J]. 燕山大学学报,2020,44(6):558-565,574.
CHEN Shuang, BU Shaoxiong, SONG Chenguang, et al.Molecular dynamics study on friction characteristics of copper based silver film[J]. Journal of Yanshan University, 2020, 44(6): 558-565, 574. (in Chinese)
作者简介:刘燕,女,1985 年出生,博士,高级工程师。主要研究方向为材料表面技术。
E-mail: aliya0719@163.com
段海涛(通信作者),男,1981 年出生,博士,研究员。主要研究方向为材料摩擦学和表面涂层技术。
E-mail: duanhaitao2007@163. com
相关链接